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Abstract. The linear combinations of Gaussian type orbitals fitting function (LCGTO-FF) method is used
to study the electronic and geometrical properties of plutonium monolayers with square and hexagonal sym-
metry. The effects of several common approximations are examined: (1) scalar-relativity vs. full-relativity
(i.e., with spin-orbit coupling included); (2) paramagnetic vs. spin-polarized; and (3) local-density approxi-
mation (LDA) vs. generalized- gradient approximation (GGA). The results indicate that spin-orbit coupling
has a much stronger effect on the monolayer properties compared to the effects of spin-polarization. In
general, the GGA is found to predict a larger lattice constant and a smaller cohesive energy compared to
LDA predictions. We also find a significant compression of the monolayers compared to the bulk, contra-
dicting the only other published result on a Pu monolayer. The current result supports the existence of a
δ-like surface on α-Pu.

PACS. 71.15.Mb Density functional theory, local density approximation, gradient and other corrections –
71.15.Nc Total energy and cohesive energy calculations

1 Introduction

During the past two decades, considerable theoretical ef-
fort has been devoted to studying the electronic and geo-
metric structures and related properties of surfaces to high
accuracy. One of the many motivations for this burgeoning
effort has been a desire to understand the detailed mecha-
nisms that lead to surface corrosion in the presence of en-
vironmental gases; a problem that is not only scientifically
and technologically challenging but also environmentally
important. Such efforts are particularly important for sys-
tems like the actinides for which experimental work is rel-
atively difficult to perform due to material problems and
toxidity.

Among the actinides, plutonium is particularly inter-
esting in two respects [1]. First, Pu has, at least, six stable
allotropes between room temperature and melting at at-
mospheric pressure, indicating that the valence electrons
can hybridize into a number of complex bonding arrange-
ments. Second, plutonium represents the boundary be-
tween the light actinides, Th to Pu, characterized by itin-
erant 5f electron behavior, and the heavy actinides, Am
and beyond, characterized by localized 5f electron behav-
ior. In fact, the high temperature fcc δ-phase of pluto-
nium exhibits properties that are intermediate between
the properties expected for the light and heavy actinides.
These unusual aspects of the bonding in bulk Pu are apt to
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be enhanced at a surface or in a thin layer of Pu adsorbed
on a substrate, due to the reduced atomic coordination
of a surface atom and the narrow bandwidth of surface
states. For this reason, Pu surfaces and films may provide
a valuable source of information about the bonding in Pu.

The present work focuses on a theoretical investiga-
tion of the simplest possible model for a Pu surface or
film, i.e., an isolated monolayer. Although, in general, a
metal monolayer provides a rather poor approximation to
the one-electron properties of a surface, monolayer calcu-
lations can produce useful information about the bonding
that is not readily accessible from calculations on thicker
slabs or a surface. In particular, the relaxation of an iso-
lated monolayer, relative to its bulk analog, provides an
indication of the stress that the remainder of the solid
exerts on the outer layer of atoms. It also may provide
guidance in selecting substrates to be used for epitaxial
deposition of a single monolayer under laboratory condi-
tions.

This investigation has concentrated on square and
hexagonal Pu monolayers that correspond to the (100)
and (111) surfaces of δ-Pu. Although the monoclinic α-
phase of Pu is more stable under ambient conditions, there
are advantages to studying δ-like monolayers. First, small
amounts of impurities can be used to stabilize δ-Pu at
room temperature. Second, grazing-incidence photoemis-
sion studies combined with the calculations of Eriksson,
et al. [2] suggest the existence of a small-moment δ-like
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surface on α-Pu. Finally, it may be possible to study 5f
localization in a Pu monolayer as a function of lattice spac-
ing through adsorption on a series of carefully selected
substrates; in which case, the adsorbed monolayers are
more likely to be δ-like than α-like.

2 Results and discussions

The properties of the square and hexagonal Pu mono-
layers have been determined here with a new relativistic
version [3] of the linear combinations of Gaussian type or-
bitals fitting function (LCGTO-FF) method, as embodied
in the program GTOFF [4–6]. This technique is distin-
guished from other variants of the LCGTO method by
its use of two auxiliary GTO basis sets to expand the
charge density and the exchange-correlation (XC) inte-
gral kernels. The charge fitting function coefficients are
determined variationally, by minimizing the error in the
Coulomb energy, while the XC coefficients are obtained
with a least squares fit. In its non-relativistic form, the
LCGTO-FF method is known to yield results that are
comparable to results produced by other all-electron, full-
potential DFT methods. Unlike many other electronic
structure methods, however, the LCGTO-FF method is
directly applicable to such diverse systems as isolated clus-
ters of atoms [7], polymers [8], ultra-thin films [4,5], and
crystalline solids [6]. Thus, the present calculations do not
invoke the repeated slab approximation often required in
other methodologies.

The relativistic implementation of the LCGTO-FF
method has progressed through several stages over the
years. Scalar-relativity was initially implemented [3] in
GTOFF using a nuclear- only Douglas-Kroll-Hess trans-
formation [9,10] that neglected relativistic terms involv-
ing cross- products of the momentum operator. Subse-
quently [11], all scalar-relativistic cross product terms,
and spin-orbit coupling terms (nuclear-only) have been in-
cluded in the current fully- relativistic version of GTOFF.
This version, however, does not yet allow simultaneous in-
clusion of spin-polarization and spin-orbit coupling effects.
In addition, GTOFF does not calculate orbital moments;
a limitation that should be of little consequence here, since
previous calculations suggest that orbital polarization has
little effect on properties of the Pu monolayers [2].

The overall precision of any LCGTO-FF calculation
is, to a large extent, determined by the selection of the
three basis sets. In this work, the orbital basis set used
for Pu started with a 23s20p15d11f uncontracted basis
set derived from an atomic basis set [12]. This basis set
was contracted into a 17s14p11d7f basis with coefficients
taken from scalar-relativistic atom calculations using the
same DFT models as were used in the film calculations.
The basis set was then augmented with an s-type func-
tion with an exponent of 0.07, a pz type function with an
exponent of 0.08, and a d-type function with an exponent
of 0.12. The charge and XC basis sets were 25s2d and
21s2d, respectively. The two-dimensional Brillouin zones
for the hexagonal and square monolayers were sampled on

Fig. 1. Binding energy (eV) vs. nearest-neighbor-distance
(a.u.) for the square monolayer in the generalized-gradient-
approximation (GGA) and the local-density-approximation
(LDA).

uniform meshes with 19 and 28 irreducible points, respec-
tively. For each calculation, the SCF cycle was iterated
until the total energy was stable to within 0.01 mRy.

For the Pu monolayers, the effects of several ap-
proximations have been studied: (1) scalar-relativity vs.
full-relativity (i.e., spin-orbit coupling included); (2)
paramagnetic vs. spin-polarized; and (3) local density
approximation (LDA) [13] vs. generalized gradient
approximation (GGA) [14]. First, non-spin-polarized
local-density-approximation (NSP-LDA) and generalized
gradient approximation (NSP-GGA) calculations were
carried out at both the scalar-relativistic (SR) and fully-
relativistic (FR) levels. Spin-polarized (SP) calculations
were then carried out for the LDA and GGA models,
assuming a ferromagnetic ordering, without spin-orbit
coupling. (Recall that simultaneous spin-polarization and
spin-orbit coupling is not yet implemented in GTOFF.)
For each combination of approximations, total energies,
work functions, and spin-moments were calculated on a
uniformly spaced mesh of lattice parameters near the en-
ergy minimum. For the square monolayer, the lattice con-
stant (nearest neighbor distance) was varied from 4.2 to
5.0 bohr in steps of 0.1 bohr. The lattice constants (near-
est neighbor distances) for the hexagonal monolayer were
chosen to produce the same unit cell areas as were used for
the square monolayer. Binding energies were obtained for
each lattice constant by subtracting atomic energies cal-
culated using an orbital basis set formed by augmenting
the monolayer basis with several diffuse GTOs. Finally,
equilibrium lattice parameters and energy minima were
determined by fitting the binding energies to a cubic poly-
nomial. The LDA and GGA binding energy curves for the
square and hexagonal monolayers are plotted in Figures
1 and 2, while the spin moments for the two monolayers
are given in Figures 3–4. The equilibrium lattice constants,
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Fig. 2. Binding energy (eV) vs. nearest-neighbor-distance
(a.u.) for the hexagonal monolayer in the generalized-gradient-
approximation (GGA) and the local-density-approximation
(LDA).

Fig. 3. Spin magnetic moment (Bohr magnetons) vs. nearest-
neighbor-distance (a.u.) for the square monolayer in the
generalized-gradient-approximation (GGA) and the local-
density-approximation (LDA).

cohesive energies, and work functions found here are listed
in Table 1.

For the square monolayer, spin-polarization does not
significantly affect the cohesive energy or the lattice con-
stant regardless of the model, LDA versus GGA. This re-
sult is due to the rather small lattice constants found here
for the square monolayer, which enhance hybridization
and inhibit spin-polarization. For the hexagonal mono-
layer, the effect of spin- polarization on the lattice con-
stant is highly dependent on the model being used, LDA

Fig. 4. Spin magnetic moment (Bohr magnetons) vs. nearest-
neighbor-distance (a.u.) for the hexagonal monolayer in
the generalized-gradient-approximation (GGA) and the local-
density-approximation (LDA).

Table 1. Equilibrium nearest neighbor distances (bohr), cohe-
sive energies (eV) and work functions (eV) for different levels
of theory.

System Theory a(a.u) Ecoh (eV) Wf (eV)

Square LDA(NSP-NSO) 4.44 3.84 4.92

Monolayer LDA(SP-NSO) 4.44 3.84 4.92

LDA(NSP-SO) 4.51 4.70 4.87

GGA(NSP-NSO) 4.51 −0.17 4.41

GGA(SP-NSO) 4.50 −0.18 4.41

GGA(NSP-SO) 4.62 0.99 4.36

Hexagonal LDA(NSP-NSO) 4.73 3.77 4.85

Monolayer LDA(SP-NSO) 4.73 3.78 4.75

LDA(NSP-SO) 4.80 4.55 4.71

GGA(NSP-NSO) 4.82 −0.21 4.74

GGA(SP-NSO) 4.89 −0.16 4.39

GGA(NSP-SO) 4.96 0.89 4.28

Pu Metal LDA(NSP-NSO) 5.40 4.44

LDA(NSP-SO) 5.62 5.65

GGA(NSP-NSO) 5.56 0.31

GGA(NSP-SO) 5.85 1.98

Experiment 6.21

vs. GGA. For the LDA, the lattice constant (and cohe-
sive energy) of the hexagonal monolayer is only slightly
affected by spin-polarization. For the GGA, however, the
hexagonal lattice constant is increased by roughly 1.5 per-
cent. Again, this result can be understood in terms of
the effect that the lattice constant has on hybridiza-
tion. In general, gradient corrections increase lattice



432 The European Physical Journal B

constants, thereby reducing hybridization and favoring
spin-polarization. In addition, even for a fixed value of the
lattice constant, gradient corrections will tend to enhance
spin-polarization.

Spin-orbit coupling, on the other hand, has a signifi-
cant effect on the cohesive energies and lattice constants
of both monolayers, regardless of the model used. For the
square monolayer, spin-orbit coupling increases the lattice
constant by roughly 1.6 percent using the LDA or 2.4 per-
cent using the GGA. For the hexagonal monolayer, spin-
orbit coupling increases the lattice constant by 1.5 per-
cent using the LDA or 2.9 percent using the GGA. In all
cases, spin-orbit coupling increases the cohesive energy by
several tenths of an eV. In fact, for the GGA model, spin-
orbit coupling effects must be included to achieve binding
in either monolayer, as is evidenced by the local maxima
that appear in the SP-GGA binding energy curves under
expansion. It is well known also that, in general, LDA
consistently overestimates cohesive energies and we also
note that at the scalar-relativistic level, the Pu atom is
spin-polarized and that at the fully-relativistic level, it is
paramagnetic.

Comparison of the monolayer lattice constants found
here with bulk lattice constants obtained at the same lev-
els of theory [11] (Tab. 1) reveals that the monolayers are
highly compressed. For the square monolayer, the com-
pression varies from 17.8 to 21.0 percent, depending on
the level of theory employed. For the hexagonal mono-
layer, the compression varies from 12.0 to 15.1 percent. All
of these contractions are more than twice as large as the
largest contraction found for any alkali-metal or alkaline-
earth-metal monolayer using the LCGTO-FF technique;
i.e., 4.4 percent for Mg [15]. The anomalously large con-
tractions found here for the Pu monolayers directly con-
tradict the results of Eriksson et al. [2], who, using the film
linearized muffin-tin orbitals (FLMTO) method, found
that the paramagnetic monolayer exhibited a 4.3 percent
expansion of the lattice constant. They interpreted this
anomalous expansion as being due to a loss in the 5f
cohesion, associated with the narrowing of the 5f par-
tial DOS at the surface. This appears to be the only Pu
monolayer calculation reported in the literature, though
Hao et al. [16] have studied the (111) and (100) surfaces
of δ-Pu, using a five-layer slab geometry and the FLMTO
method. For the paramagnetic, fully-relativistic square
monolayer, Eriksson et al. [2] found a lattice constant of
5.61 bohr, substantially larger than the 4.51 bohr found
here. For the scalar-relativistic spin-polarized monolayer,
Eriksson et al. predicted a lattice constant of 5.73 bohr
versus the 4.44 bohr found in the present study.

The large qualitative difference between the highly
compressed monolayer lattice constants found here and
the expanded lattice constants obtained by Eriksson
et al. [2] has important implications for real systems. The
present results suggest that the atoms in the outer layers
of the (111)- and (100)-surfaces of δ-Pu would compress if
it were not for a large opposing stress exerted by the re-
mainder of the solid, whereas the earlier FLMTO results
suggest the opposite. Similarly, the current results suggest

that it should be possible to grow a thin film of δ-Pu on a
substrate whose lattice constant is markedly smaller than
that of bulk δ-Pu (such as α-Pu), while the FLMTO re-
sults indicate that a better match could be achieved by
using a substrate with a slightly larger lattice constant.
Thus, the LCGTO-FF results support the existence of a δ-
like surface on α-Pu, whereas the FLMTO results do not.

The surprisingly large difference found here between
the lattice constants obtained with two different all-
electron, full-potential electronic structure methods war-
rants further discussion. Although the FLMTO method
employed by Eriksson et al. has been used with consider-
able success on a number of systems, the overall quality
of the results obtained with any method will be largely
determined by the selection of the basis set. In their work
on the Pu monolayer, Eriksson et al. employed a basis
set of 16 muffin-tin orbitals (MTO); i.e., the 7s, 7p, 6d,
and 5f states were each represented by a single MTO. In
contrast, more recent work on the bulk actinides has uti-
lized doubled-basis sets that include the semi-core 6s and
6p states [17]. It seems likely that the large differences
between the LCGTO-FF results and the FLMTO results
are due to the rather small basis set that was used in the
latter work.

It should be noted that it is well-known that tradi-
tional electronic structure theory, such as is used here and
in the FLMTO calculations, is ill-equipped to describe the
highly-correlated 5f states of the actinide metals [18]. In
addition, there has been a vigorous debate in recent years
as to the correct LDA and GGA values for the lattice con-
stants of the light-actinides [11,19–21]. For these reasons,
the monolayer lattice constants obtained here should be
viewed with some skepticism. This difficulty should not,
however, affect the directions and approximate sizes of the
shifts in the theoretical lattice constants.

The work functions for the square monolayers vary
over a range of 4.36 eV to 4.92 eV, whereas for the hexag-
onal monolayer, the range is from 4.28 eV to 4.85 eV.
The GGA values are always smaller than the correspond-
ing LDA values, with the GGA (NSP-SO) values being
the smallest for both monolayers. The work functions
are near the values normally found in transition metals
(5±1 eV). Here, for the paramagnetic square monolayer,
the present value of 4.87 eV at the equilibrium lattice
constant of 4.51 bohr is comparable to the FLMTO re-
sult of ∼5.15 eV at an equilibrium lattice constant of 5.61
bohr [2]. For the scalar-relativistic spin-polarized case, the
present work function value is 4.92 eV at the equilibrium
lattice constant of 4.44 bohr whereas Eriksson et al. found
a value of ∼4.50 eV at their equilibrium lattice constant
of 5.73 bohr. Eriksson et al. [2] also found that at a lattice
constant corresponding to δ-Pu, the work function from
the monolayer calculation was quite close to the value ob-
tained from their five-layer calculation, claiming that their
monolayer results may well represent the surface of an ex-
tended solid. For the (100) and the (111) faces of Pu, Hao
et al. [16] estimated the FLMTO work function of Pu to
be 3.68 and 4.14 eV, respectively. Given the differences be-
tween the lattice constants being considered in the various
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calculations, the differences in the predicted work func-
tions are not unreasonable.

The spin moments, for the square and hexagonal
monolayers respectively, are shown in Figures 3 and 4.
For the square monolayer, the spin-moments at the equi-
librium lattice constants are found to be nearly zero, re-
gardless of the model used. However, as the lattice con-
stant increases, the spin moments increase significantly,
with the transition occurring earlier in the GGA. This
might be due to the approximations inherent in GGA and
the fact that gradient corrections are expected to be large
because of the presence of the f -states. Eriksson et al. [2]
found a significantly larger value for the spin moment of
∼6.0 µB at their equilibrium lattice constant of 5.73 bohr.
This discrepancy is most likely due to the large difference
between the lattice constants in the two calculations. For
the hexagonal monolayer, the spin moments are, in gen-
eral, larger compared with the spin moments of the square
monolayer because of the larger nearest neighbor distance
for a given cell area.

In conclusion, we have studied the electronic and geo-
metric properties of a Pu monolayer, using the LCGTO-
FF method. Spin-orbit coupling is found to have a stronger
effect on the electronic and geometric properties of the
plutonium monolayer, square or hexagonal, compared to
the effects of spin-polarization. Our results also indicate
that the monolayer is significantly compressed compared
to the “ideal” monolayer, contradicting the only other
published result in the literature.
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